
Self-configuring user interface components

Pietu Pohjalainen
Department of Computer Science

University of Helsinki
pietu.pohjalainen@cs.helsinki.fi

ABSTRACT
In development phases of a software, its user interface is cru-
cial to acceptance. In early phases, rapid prototyping helps
in gaining sponsors for the development project. During de-
velopment, the user interface is updated to meet changing re-
quirements and, finally, maintenance-related tasks consume
a major portion of effort. Some of this exertion is inher-
ent and unavoidable, but very often it is just unnecessary
overhead which is hindered by tedious internal dependen-
cies being out of synchrony. In this paper, we show how a
self-configuration via software introspection combined with
semantic mapping of backend methods can be used to main-
tain quality of a user-interface even under pressure of chang-
ing requirements.

Author Keywords
self-configurating components, user interface, software en-
gineering

ACM Classification Keywords
D.1.2 Automatic Programming: Self-configuring components;
H.5.2 User Interfaces: Prototyping

INTRODUCTION
In software engineering, development of user interfaces is
an important, yet often a time-consuming task. This origi-
nates partly from the inherent properties of software devel-
opment: changes in operating environment or operational re-
quirements propagate to the user interface as well. However,
part of the spent effort is due to shortcomings in the internal
development environment, defects in the architecture of the
software, or limitations in the programming language.

In this paper, we present an introspection-based technique
to reduce the required user interface maintenance effort in
context of user interface components. The idea is that when
composing the user interface from ready-made components,
the binding expressions contain a lot of redundancy. By
changing the binding code to be generated via introspective
routines, we can get rid of copy-pasted code fragments, thus

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SEMAIS 2010, February 7th, 2010, Hong Kong, China.

lessening required work for doing intended modifications.
The method reduces user interface developers’ need to con-
centrate their attention to small level details and allows them
to rapidly generate consistent user interfaces.

The rest of the paper is structured as follows. The next sec-
tion gives a brief overview to the current state of component-
based user-interface construction methods with Java Server
Faces (JSF). After that follows the case study with a running
example, followed by a short evaluation of the case study.
The next section reviews related work which after follows
the conclusion.

COMPONENT BINDING IN THE USER INTERFACE
Let us consider the button as a common user interface com-
ponent. The component has a binding place for a callback
for determining whether the button should be active or dis-
abled. There is also another binding place which specifies
the callback for generating a tooltip when the user is hover-
ing over the button component with the mouse. When the
button happens to be in a disabled state, the user might be
wondering the reason. For good usability, the reason could
be told to the user via the tooltip. For an illustration, see
Figure 1 where a disabled button has an attached tooltip ex-
plaining why the user can not press the button.

Figure 1. A tooltip explanains the UI behaviour

In modern component-based user-interface libraries, the com-
ponents in the user interface, such as a textfield, or a button,
are parametrized to conform to their current context. A bind-
ing language is used for this parametrization. For example,
in JSF [2] the glue-code between the standard behavior de-
fined by the component and the parametrized behavior could
be as shown in Figure 2.

In the component binding sections, the attributes of disabled,

1



style and title define whether the component is active or dis-
abled, what style-sheet should be used to render the compo-
nent and what text is shown as the tooltip of this component.
The binding is done with a special expression language, as
defined in the JavaServer Pages specification [1]. Expres-
sions to be executed during rendering of the component are
marked by placing the expression inside the metacharacters
of #{ and }. External configuration is used to bind names in
certain namespace to classes of the host language environ-
ment.

<h:commandButton
...
disabled="#{not
(loginManager.loggedIn and
loginManager.feedbackLevel >= 5)}"

style="#{loginManager.loggedIn or
loginManager.feedbackLevel >= 5)
? ’button’
: ’button-disabled’}"

title="#{not (loginManager.loggedIn
and loginManager.feedbackLevel >= 5)
? ’You need to be logged in and
have feedback level of 5 before
posting with signature’
: ’Post a comment’}">

</h:commandButton>

Figure 2. JSF component code for the Post-button

In this example, there is a correlation between three attributes
of the component. Each of the attributes is defined by means
of login status and the feedback level of the user: only users
who are logged in and have feedback level greater than five
can post comments, others need to post anonymously. Clearly,
the implementing code for these callbacks go hand in hand.
Let us say that the required feedback level for posting com-
ments non-anonymously is changed to three. Now the changed
rules for disabling the button need to be mirrored also in the
corresponding binding expressions.

In this text we show how this kind of code copying can be
attacked. This case study demonstrates how the concept of
self-configuration can be applied in software engineering via
usage of introspection and reflection mechanisms that are
available in current programming environments. We tar-
get to JSF, as it is a widely used standard in web devel-
opment and its component binding language is easily an-
alyzable. This enables a reflective analysis of the compo-
nent bindings, and makes the analysis more practical than
self-configuration of components built in full-fledged gen-
eral purpose programming language.

SELF-CONFIGURATION OF UI COMPONENTS
Our solution to reducing this duplication is built on two com-
ponents: a generic evaluator of binding expressions and a
domain-specific semantic model of expression elements. The
target is to enable faster prototyping of user interfaces with-
out sacrificing code quality.

The generic evaluator decomposes an arbitrary binding ex-

pression to its atomic elements. In Figure 2 the disabled-
status would be a natural choice of being analyzed into form
of ¬(loggedIn ∧ feedbackLevel ≥ 5) and exports the sta-
tus to be used in other binding expressions. This evaluator
comes as a ready-made component to the platform and is
re-usable in different projects.

A semantic model of the application domain is used to pro-
duce domain-specific parts in the binding expressions. For
example, the two domain-specific methods in Figure 2 are
LoginManager.loggedIn which tells the login status of the
user and LoginManager.feedbackLevel which returns the feed-
back level of the user. These two conditions are combined
not only in the disabled-status evaluation, but also when pro-
ducing the tooltip for the button. The net result is that the
user does not know without external reference if he is not
allowed to push the button because he has not yet logged in,
or due to insufficient feedback level.

An obvious solution to the problem is to write specific branches
for both of the cases by using the tertiary if-operation. How-
ever, enumerating all the possibilities in such a way gets
rather complicated, as the number of different possible com-
binations grows exponentially when the number of atomic
parts grows in the expression. Because the expressions are
also reused in many contexts, it would be only a matter of
time before the specifications are no longer equivalent.

Instead, our target is to remove the duplication between the
user interface’s disabled status and its corresponding tooltip.
Figure 3 shows the same functionality, implemented as a
self-configuring user-interface component. There are two
differences: first, the used stylesheet is chosen by referring
to another expression in the component’s bindings via the
disabled-status instead of copying the original expression.
The another difference is that the tooltip for the component
is generated by a special function getTooltip.

<h:commandButton
...
disabled="#{not

(loginManager.loggedIn and
loginManager.feedbackLevel >= 5)}"

style="#{!MyBean.disabled ? ’button’ :
’button-disabled’}"

title="#{MyBean.tooltip}">
</h:commandButton>

Figure 3. Self-configuring component

By introducing domain-specific semantic mappings between
elementary expressions and their meaning in the user inter-
face, the generic evaluator can produce more detailed feed-
back in this situation. As the generic evaluator has decom-
posed the expression into its elementary parts, it can deter-
mine the exact reason why the button in question is disabled.
This information can then be used to automatically generate
related binding expressions, thus enabling better quality and
faster development.

The semantic mapping describes the bridge between the com-

2



ponent binding expressions and the user’s vocabulary: the
method call of LoginManager.loggedIn is mapped to a
natural language description of ”you are {not} logged in”.
The other method call, LoginManager.feedbackLevel is
mapped to ”feedback level is lower than {%1}”. The generic
evaluator uses these strings to automatically generate the
correct tooltips without introducing additional maintenance
overhead.

Technical details
The getDisabled method in MyBean re-evaluates the expres-
sion in the disabled-attribute of the component and based
on that result, the component chooses the correct stylesheet
to use. It is important to notice that the original expres-
sion is now referred to in the evaluation, thus the semantic
link between the used style sheet and the original expres-
sion is remaining. This is already an improvement over the
the previous example. The getTooltip method in MyBean
is a more complex case. In addition to the information of
which expression to use as the original specification, it con-
tains the domain-specific semantic mapping for generating
the tooltip.

There are two different re-evaluation strategies used in this
example. The first one is a simple reusing of the original ex-
pression. In this case, the only benefits are cleaner syntax in
the component specification and the re-established link be-
tween original behavior-specifying expression. The second
strategy is to use a generic evaluator with semantic mappings
to generate a more meaningful error message for the user.

Generic evaluator
The generic evaluator performs its job in four phases. First it
decomposes the given expression into atomic propositional
formulae, then builds a truth table for the expression. Third
step is to select appropriate semantic descriptions to be re-
turned and the final step is to build up the response.

Decomposing specification expressions
The expression language used with JSF is rather simple to
analyze. The language contains only expressions, with lit-
erals, connectives and operators. Literals can be boolean,
floating point, integers, strings or nulls. The two available
connectives are and (∧) and or (∨). A set of standard opera-
tor consists of relational operators for equality and compar-
ison operators of equals, not equals, greater than, less than
(=, 6=, > and <), arithmetic operators of plus, minus, multi-
plication, division and modulo (+, −, ∗, ÷ and mod ) and
unary operators of negation and minus (¬ and −). Finally,
bridging to methods in the host language, which is usually
Java, is provided via value bindings and method bindings.

A value binding expression is a unifying shortcut for gaining
access to accessor methods (setters and getters) of objects
in the host language. For example, in Figure 3 the expres-
sion #{MyBean.tooltip} is a value binding which tells to use
methods named getTooltip and setTooltip to in the object
named MyBean in the host environment when the user in-
terface component needs to receive or modify the value of its
title. A method binding is a way to express the method name

in object in the host language’s environment, which should
be called in certain situation.

Although the syntax contains a few elements that are de-
signed to give friendly programming experience for a pro-
grammer who does not remember the exact syntactical and
semantical constructs, the language is easy parse into object
representation, which can be used for further analysis.

Building a truth table
Execution of logical expressions in many programming lan-
guages is short-circuited. This causes the execution to be
stopped as soon as the final result is known. For example,
when the evaluation of A in expression A ∨ B returns true,
the expression B is not executed at all, because the expres-
sion will be true regardless of its return value.

Implementing short-circuited semantics is one possible so-
lution to selecting the semantic description that should be
shown to the user. Unfortunately this tactic has the short-
coming of then producing only the most immediate reason
for the component not to be active. Consider again the ex-
pression A ∨ B. The component under processing is not
active if either of the reasons, A or B holds. With short-
circuited evaluation when both of the conditions hold, the
user is only informed about the condition A. Frustration oc-
curs when the user changes the condition A only to find out
that the condition B, which he was not aware at all, is still
blocking his access.

For this reason, we build a truth table for the expression. A
truth table is a enumeration of all possible combinations of
atomic conditions in the expression. For example, the truth
table for expression ¬(loggedIn ∧ feedbackLevel ≥ 5) is
as shown in Figure 4.

loggedIn T T F F
feedbackLevel ≥ 5 T F T F
Result F T T T

Figure 4. Truth table for the expression

From the truth table, we can see that with this particular ex-
pression, if either of the atomic propositional formulae re-
turns false, then the whole expression returns false.

A truth table clarifies the functions of atomic components
of an expression. However, for an expression with n atomic
components, there are 2n columns in the table. If the number
of atomic expressions is a concern, we can use a combined
truth table, which prunes redundant columns, replacing the
truth value in a column with symbol T/F , representing both
true and false. However, in practice the number of atomic
expressions is fairly low, so the potential exponential size of
the truth table is seldom a practical problem.

Selecting semantic descriptions
From the truth table, we can see what conditions should be
changed to activate the component. In this phase, we also

3



consider our current conditions and use these with the se-
mantic map for domain-specific descriptions.

We start by evaluating the whole expression in a non-short-
circuited manner and memorize the result of each of the
atomic propositions. The full set of atomic results is used
to find the corresponding column in the truth table. For ex-
ample if the user is logged in, but has only feedback level of
3 instead of expected 5, the second column is chosen in the
Figure 4. From this column we select each description for
atomic conditions that are different than what is expected to
get the final result to change its truth value.

There are three concerns in this phase. The first concern is
the change in the expected execution semantics. The origi-
nal expression might contain side-effects that rely on short-
circuited semantics. In this case, fully evaluating the expres-
sion can perform erroneously, although the original expres-
sion always works correctly. For this reason, the evaluator
can be instructed to use non-short-circuited semantics in its
evaluation, as a fallback for this case. A drawback with this
option is that only the most immediate error message can be
shown to the user.

The second concern is about how to know which column
in the truth table is the desired one. In Figure 4 it is not a
problem, as there is only one column which unambiguously
activates the component in question. But in general there is
no guarantee that there would be exactly one set of atomic
conditions which yields activation for the component. For
this reason, the evaluator can be given a target value for each
of the atomic propositions, which should be preferred in case
of ambiguity.

The third problem is that some of the atomic propositions
are not meant to be shown to the user. This may be because
the propositions might be regarded as just part of technical
implementation, or maybe the information should be shown
only conditionally. Whatever the reason for not showing
the explanation for a certain atomic proposition, the generic
evaluator can be instructed to leave some propositions out by
not giving a corresponding semantic description.

Building up the response
The final phase for the generic evaluator is to yield a compre-
hensible message to be displayed for the user. This is done
by selecting each atomic proposal whose value was found
out to differ from the value expected by the desired column
in the truth table. Each of the associated messages are pro-
cessed through a simple parametrization filter, which allows
the messages to contain situation-specific parametrization.

For example, in the semantic message You are {not} logged
in the middle not is used to parametrize the outgoing mes-
sage. If the associated atomic proposition returned true, then
that part is not included in the message. This way, the same
message can be used in many contexts. Other parametriza-
tion possibilities include using {%1} for referring to the other
member of a relational operator. For example, in the seman-
tic message of You have feedback level lower than {%1} the

last part is replaced by the value received from the actual
expression.

Finally, each single message is concatenated to produce the
final message which is shown to the user.

EVALUATION
The generic evaluator presented in the previous section is
a way to move the burden of updating dependencies within
a software from the programmer to a runtime introspective
component. This generates a minor overhead for the exe-
cution environment. It can be noted that the whole concept
relies on backend methods returning consistent values over
subsequent invocations. However, this tends not a problem,
as the overall philosophy with JSF accessors is that they are
not destructive for the accessed data and should have no vis-
ible side-effects.

The current implementation is library based, meaning that
no changes to the base frameworks were made. This makes
it easy to reuse the solution in other projects using JSF. Hav-
ing made no changes to the base framework also caused
few implications, which make it clumsier than necessary for
the programmer. Also some optimization opportunities have
been missed.

Our first complaint with this solution is the binding between
user interface components in the presentation layer and back-
ing software. Currently, there is no concept of this compo-
nent in the backing bean. This means that every component
that is using the generic evaluator for generating tooltips
needs a binding methods of their own; the first task of the
bound method is to find the corresponding user interface
component from its environment.

The second shortcoming is associated with the missed op-
timization opportunities. The generic evaluator re-evaluates
the bound methods quite a many times, as the the framework
provides no opportunity to memorize the previously evalu-
ated results. By changing the framework to provide such op-
portunities, or maybe using a memoizing aspect component,
the architecture could be changed to evaluate each bound
method only once, thus saving in rendering time.

RELATED WORK
The scope of this paper is to present a way for reducing ef-
fects of unnecessary copying of program logic by charac-
terizing an introspective framework for expressing relation-
ships that are identified at programming time. The motiva-
tions is that seldom there is a way for annotating these rela-
tionships in the code; self-analyzing code is too often con-
sidered to be too complex to write and maintain. There is
a certain degree of irony, as instead an anti-pattern of copy-
and-paste [5] is often used.

Detection of software clones is an established activity in the
area of reverse engineering, and a number of papers have
been written on the topic [3, 4]. In this field, automated tools
are applied to detect code duplicates for a human engineer to
refactor.

4



In many situations, however, the code cloning happens due
to limitations in the programming environment – the prob-
lem is not about finding or understanding that code has been
duplicated, but rather that there just is no better way than
copy and paste to express the relationship between two code
elements. This has proven to be laborous when analysing
a full-fledged, general purpose programming language. For
example, previously we applied similar approach in analysing
database queries generated by an object-oriented program
[10]. The provided level of abstraction turned out to be
rather low-level, which made the analysis much harder than
analysis of JSF’s expression language. For these situations,
Hammouda et al. have introduced the concept of mainte-
nance patterns [8] for expressing advice for future maintain-
ers of a certain piece of software.

Maintenance patterns are documentation for a maintenance
programmer, for performing anticipated maintenance tasks.
Often these tasks require changes to more than one code lo-
cation; the documentation in the maintenance pattern car-
ries this knowledge from the original designer to the mainte-
nance programmer (who might be the same person, who has
already forgotten the required actions).

Automatic refactorings, such as hierarchy restructuring [9]
are nowadays a standard in modern development environ-
ments. For example, the Eclipse IDE has gained much pop-
ularity, partly due to its large offering of automated refac-
torings for Java code [7]. However, automated refactorings
tend to be applicable only to structural dependency handling,
while our self-configuring components are targeted to anno-
tate and handle conceptual dependencies.

Many web programming frameworks, such as Ruby on Rails
[11] or Lift [6] have been organized around the concept of
interweaving scripting instructions for generating web page
output with templating engines. Many frameworks also offer
sophisticated means for automatically generating the final
output.

Although the techniques shown here are totally applicable
in these environments, the expressive power of a general
purpose language makes it much harder to self-analyze the
meaning of a part of a program. Generative approaches can
be seen as complementary techniques to attacking a similar
problem. However, with generative techniques, there often
is the question of how to keep the model and generated parts
synchronized, especially if it is possible to make changes to
the generated parts of the program.

CONCLUSION
In this paper’s context, we have employed the Java Server
Faces framework and its expression language to demonstrate
the need for self-configuring components. The intention is
to reduce maintenance work by reducing the number of in-
ternal dependencies in the software. This is supposed to pre-
vent the deterioration of software usability as the internal
structure of the software is automatically maintained.

A combination of introspecting software components with

semantic augmentation is not widely employed in current
technologies. However, reducing the number of internal de-
pendencies within user-interface code is crucial when at-
tempting to reduce the required maintenance effort in soft-
ware projects. This is important, as there is a link between
usability and the required maintenance effort. If the soft-
ware is hard to maintain, its usability will deteriorate over
time. On the other hand, if maintenance tasks are easy for
the programmer, the usability stays in the originally intended
level.

REFERENCES
1. JSR 152: JavaServer Pages specification, version 2.0.

Technical report, Sun Microsystems, 2003.

2. JSR 252: JavaServer Faces 1.2. Technical report, Sun
Microsystems, 2006.

3. B. S. Baker. On finding duplication and
near-duplication in large software systems. In WCRE
’95: Proceedings of the 2nd Working Conference on
Reverse Engineering, pages 86–95, Washington, DC,
USA, 1995. IEEE Computer Society.

4. M. Balazinska, E. Merlo, M. Dagenais, B. Lagüe, and
K. Kontogiannis. Advanced clone-analysis to support
object-oriented system refactoring. In WCRE ’00:
Proceedings of the 7th Working Conference on Reverse
Engineering (WCRE’00), pages 98–107, Washington,
DC, USA, 2000. IEEE Computer Society.

5. W. J. Brown, R. C. Malveau, and T. J. Mowbray.
AntiPatterns: Refactoring Software, Architectures, and
Projects in Crisis. Wiley, 1998.

6. D. Chen-Becker, T. Weir, and M. Danciu. The
Definitive Guide to Lift: A Scala-based Web
Framework. Apress, Berkely, CA, USA, 2009.

7. D. Geer. Eclipse becomes the dominant Java IDE.
Computer, 38(7):16–18, 2005.

8. I. Hammouda and M. Harsu. Documenting
maintenance tasks using maintenance patterns. In
CSMR ’04: Proceedings of the 8th Euromicro Working
Conference on Software Maintenance and
Reengineering (CSMR’04), pages 37–47, Washington,
DC, USA, 2004. IEEE Computer Society.

9. I. Moore. Automatic inheritance hierarchy restructuring
and method refactoring. In In Proceedings of the 11th
annual conference on Object-oriented programming
systems, languages, and applications, pages 235–250.
ACM Press, 1996.

10. P. Pohjalainen and J. Taina. Self-configuring
object-to-relational mapping queries. In PPPJ ’08:
Proceedings of the 6th international symposium on
Principles and practice of programming in Java, pages
53–59, Modena, Italy, 2008. ACM.

11. S. Ruby, D. Thomas, and D. Hansson. Agile Web
Development with Rails. Pragmatic Bookshelf, third
edition, 2009.

5


	Introduction
	Component binding in the user interface
	Self-configuration of UI components
	Technical details
	Generic evaluator
	Decomposing specification expressions
	Building a truth table
	Selecting semantic descriptions
	Building up the response

	Evaluation
	Related work
	Conclusion
	REFERENCES 

